第(2/3)页 “构造法”是奥数里一个很重要的解题思维。 它是指根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,然后运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。 一般在实际解题过程中,主要的构造法有三种,把题设条件中的关系构造出来,或者将这些关系设想在某个模型上得到实现,或者把题设条件经过适当的逻辑组织而构造出一种新的形式。 构造法经历过德国克隆尼克的“直觉数学阶段”,马尔科夫的“算法数学阶段”,才进入比肖泊的“现代构造数学阶段”,由此得到推广使用,在高中阶段主要在奥数竞赛中大放异彩。 但真正熟练并灵活掌握这种“构造法”的高中生乃至数学老师,都并不算多。 因为构造法解题对学生的数学天赋有极高的要求,需要学生有极全面的知识以及敏锐的直觉,能从多角度多渠道进行联想,将代数、三角、几何、数论等知识从一方面或者多方面相互渗秀、有机结合。 偏偏蔡见森此时就见识到了这样一个将“构造法”运用得炉火纯青的高中生! 别看这秦克的证明过程只是采用了几何知识点之间的构造法,却同样将构造法的精髓运用得淋漓尽致,直指证明的内核,简化了证明流程,将原本需要整整一页纸的证明过程,化为二十行不到的证明过程! 蔡见森自问在“构造法”上也达不到这样的水平! 这……这小子的数学天赋等高到何等地步! 蔡见森目瞪口呆地看到秦克干净利落地完成了第二题,心神激荡之下,蔡见森只觉得气血翻涌、直冲脑际,平时就有点高血压的他顿时有点头晕。 他忙深吸呼三下,才勉强平伏下气血,只是在心神动荡之下,他甚至没留到到老郑、闻副校长也不动声息的来了,不久后,连其余的数学老师也全来了。 一群老师就这样静静地站在秦克后面,满脸震撼地看着他答题。 宁青筠察觉到异状,回头看了眼,不由吓了一大跳。 老郑朝她做了个噤声的动作,宁青筠迷惑地点点头,顺着众老师的目光看去,才看到同桌的秦克已在做第三题了。 少女漂亮的丹凤眼也瞬间睁大了,透出无法掩盖的震惊。 这……这家伙的解题速度也太快了吧! 自己刚刚勉强做出第一道,他居然已在做第三题了? 第(2/3)页